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Abstract

Experiments and models suggest that climate affects mosquito-borne disease transmission. How-
ever, disease transmission involves complex nonlinear interactions between climate and population
dynamics, which makes detecting climate drivers at the population level challenging. By analysing
incidence data, estimated susceptible population size, and climate data with methods based on
nonlinear time series analysis (collectively referred to as empirical dynamic modelling), we identi-
fied drivers and their interactive effects on dengue dynamics in San Juan, Puerto Rico. Climatic
forcing arose only when susceptible availability was high: temperature and rainfall had net posi-
tive and negative effects respectively. By capturing mechanistic, nonlinear and context-dependent
effects of population susceptibility, temperature and rainfall on dengue transmission empirically,
our model improves forecast skill over recent, state-of-the-art models for dengue incidence.
Together, these results provide empirical evidence that the interdependence of host population sus-
ceptibility and climate drives dengue dynamics in a nonlinear and complex, yet predictable way.
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INTRODUCTION

In concert with globalization and climate change, mosquito-
borne diseases, and dengue in particular, are (re)emerging
globally and spreading to higher latitudes (Kilpatrick & Ran-
dolph 2012; Ryan et al. 2019). Dengue virus—vectored pri-
marily by urban Aedes aegypti (Kraemer et al. 2015)—places
half of the global human population in 128 countries at risk
of infection (Brady et al. 2012; Kraemer et al. 2019). In the
absence of effective vaccines or treatments (Katzelnick et al.
2017a; Sridhar et al. 2018), public health agencies rely on vec-
tor control to reduce dengue transmission (Erlanger et al.
2008). Effective vector control interventions require under-
standing the mechanisms linking climate, vector ecology, dis-
ease transmission and host population susceptibility to better
predict disease outbreaks—a major challenge.
Since Aedes spp. mosquitoes are sensitive to climate, includ-

ing temperature and rainfall (Stewart Ibarra et al. 2013;
Mordecai et al. 2019), we expect temperature and rainfall to
be important drivers of dengue outbreaks. Although tempera-
ture affects mosquito and viral traits in laboratory experi-
ments (Watts et al. 1987; Lambrechts et al. 2011; Mordecai

et al. 2017), the relationship between temperature and dengue
incidence in the field has been ambiguous (Caldwell et al.
2020). Thus, temperature-dependent models have had mixed
success predicting the timing and magnitudes of epidemics
(Hii et al. 2012; Johansson et al. 2016; Johnson et al. 2018).
The rainfall–dengue relationship is also complex. Rainfall can
fill container-breeding habitats for mosquitoes, increasing
mosquito abundance and dengue incidence (Stewart Ibarra
et al. 2013). Low rainfall can also facilitate dengue transmis-
sion by promoting water storage that serves as standing-water
habitat for mosquitoes (Pontes et al. 2000), while heavy rain-
fall can reduce mosquito abundance by flushing out larvae
(Koenraadt & Harrington 2008). The net effect of climate on
dengue depends on many different mechanisms and is highly
context-dependent.
Disease incidence also depends nonlinearly on susceptible

availability, because epidemic growth slows as the population
of susceptible individuals is exhausted (Anderson & May
1979; Dushoff et al. 2004; Mina et al. 2015; Pitzer et al. 2015;
Rypdal & Sugihara 2019). Furthermore, susceptible availabil-
ity may influence the effects of climate on dengue dynamics.
However, such interactive effects are difficult to detect since
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susceptibility is difficult to observe, especially in endemic set-
tings where multiple serotypes circulate and create a complex
landscape of time-dependent and serotype-dependent immu-
nity (Katzelnick et al. 2017b). Specifically, four serotypes of
dengue regularly circulate in many regions: each provides
long-term serotype-specific (homologous) immunity and short-
term (heterologous) cross-protection against other serotypes
(dos Santos et al. 2017; Jiménez-Silva et al. 2018; Hamel et al.
2019). Following a brief period of cross-protection, antibodies
at a mid-range of titres can cause antibody-dependent
enhancement of disease following heterologous, secondary
infection, until titres decay to the point of nearly full heterolo-
gous susceptibility (Katzelnick et al. 2017b). Given this com-
plex and dynamic immune landscape, directly detecting
population susceptibility to circulating dengue virus at any
point in time is difficult without longitudinal serology studies,
which are not widely available (Gordon et al. 2013; Katzel-
nick et al. 2017b).
Previous prediction models of dengue outbreaks used phe-

nomenological (Johansson et al. 2009b; Hii et al. 2012; John-
son et al. 2018) and mechanistic equation-based approaches
(Tran et al. 2013; Liu-Helmersson et al. 2014; Morin et al.
2015; Mordecai et al. 2017), which may not fully capture
interdependence between climate and susceptible availability.
Phenomenological models may underperform when extrapo-
lating past observed contexts, and equation-based mechanistic
models rely on parameter estimates from laboratory studies
engineered to isolate single mechanisms producing separate
relationships between drivers and outcome, eliminating the
complex interdependence at the population level. While labo-
ratory studies provide robust validation of mechanisms (Lam-
brechts et al. 2011), the fixed relationships obtained from
them do not necessarily translate into robust causal under-
standing for the complexity of field systems (Sugihara et al.
2012). Even if causality exists between two variables in such a
system, their correlation can switch signs during different time
periods, resulting in a net correlation of zero (Deyle et al.
2016b). This temporal variation in the direction of correlation
results from the nonlinear, state-dependent relationship
between the variables. Conversely, even if two variables are
consistently correlated, the association could be spurious due
to a confounder.
To overcome these challenges, we used empirical dynamic

modelling (EDM) (Sugihara et al. 2012)—a mechanistic, equa-
tion-free, data-driven approach that accounts for the context-
dependence of ecological drivers—to identify and model
mechanisms driving dengue epidemics. EDM is based on
reconstructing system dynamics evident in time series, without
assuming fixed relationships. Relationships among variables
can change through time if interactions among variables are
context-dependent. EDM does not require assumptions about
the functional form of the model, but instead derives dynamic
relationships empirically by constructing an attractor—a geo-
metric object (i.e. curve or manifold) that embodies the rules
for how relationships among variables change with respect to
each other through time depending on system state (location
on the attractor)—from time-series observations. Like a set of
equations, the attractor encompasses the dynamics of a sys-
tem, and thus can provide a mechanistic understanding of the

system that is derived empirically, without requiring an a pri-
ori assumed set of equations.
Here we used EDM and a proxy for susceptible population

size (Rypdal & Sugihara 2019) to answer three questions: (1)
Do temperature, rainfall and/or inferred susceptible availabil-
ity drive population-level dengue incidence? (2) Can we pre-
dict dengue dynamics using temperature and rainfall data and
inferred susceptible availability? (3) What is the functional
form of each climate–dengue relationship at the population
level, and how is this relationship influenced by susceptible
availability?

METHODS

Time-series data

We obtained time series of weekly observations of dengue
incidence (total number of new cases of all serotypes), average
temperature (°C) and total rainfall (mm) in San Juan, Puerto
Rico, for 19 seasons (1990/1991–2008/2009) spanning calendar
week 18, 1990 to week 17, 2009 (Fig. 1a–c) from the National
Oceanic and Atmospheric Administration in November 2016
(http://dengueforecasting.noaa.gov/). We obtained data for
four additional seasons (2009/2010–2012/2013) from Johnson
et al. (2018) in April 2020 (https://github.com/lrjohnson0/
vbdcast). Although dengue incidence data were also available
for Iquitos, Peru (Johansson et al. 2019), we chose to focus
on San Juan because the time series was longer, and therefore
more amenable to EDM analyses (Munch et al. 2020).
Direct measurements of susceptible availability are not avail-

able, so from weekly incidence data I(t), we estimated time-
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Figure 1 Dengue incidence, climate and susceptibles index data. Time

series (seasons 1990/1991–2008/2009) of (a) weekly dengue incidence (i.e.

total number of cases per week), (b) weekly average temperature, (c) total

weekly rainfall and (d) a proxy for susceptible population size (see

Supporting Information for details) in San Juan, Puerto Rico.
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dependent growth rates: λ¼ I tþΔtð Þ=I tð Þ. The growth rate, λ, is
proportional to the effective reproduction number, Reff, and
equivalent to Reff if Δt equals the average time between primary
and secondary host infections. Vector-borne disease models
show that Reff is proportional to the geometric mean of the sus-
ceptible host population and the susceptible vector population:
Reff ¼

ffiffiffiffiffiffiffiffiffiffi
ShSv

p
R0, where R0 is the basic reproduction number

(Zhao et al. 2020). Hence, λ/ ffiffiffiffiffiffiffiffiffiffi
ShSv

p
and λ can be used as a

proxy for the susceptible population size at least during inter-
outbreak periods where the transmission rate and R0 can be
assumed to vary very little (Rypdal & Sugihara 2019).
We estimated λ by linear regression using the model

I tþΔtð Þ¼ λI tð Þ for 12 time points in a 12-week running win-
dow (Δt¼ 1 week). The model is robust to the window size
(Rypdal & Sugihara 2019). In the discrete case, when λ < 1
the system is stable (inter-outbreak period) and when λ≥1,
then the system is unstable (outbreak period) (Supporting
Information). We treated the resulting time series of λ, here-
after ‘susceptibles index’ (Fig. 1d), as a proxy for the suscepti-
ble population size when λ < 1, and a proxy for the combined
effects of susceptible availability and R0 when λ≥1.

Empirical dynamic modelling

Empirical dynamic modelling infers a system’s mechanistic
underpinnings and predicts its dynamics using time-series data
of one or more variables to construct an attractor in state
space (Fig. S1). This procedure is called univariate (using
lagged versions of a single variable time series) or multivariate
state-space reconstruction (SSR). Properties of the attractor
are assessed to examine characteristics of the system (Deyle &
Sugihara 2011). We normalized each time series to zero mean
and unit variance to remove measurement unit bias, ensuring
the variables would be comparable and the attractor would
not be distorted. All analyses were conducted in R version
3.5.1 (R Core Team 2018) and all EDM analyses were per-
formed using package rEDM (Park et al. 2020).
To infer mechanisms, EDM should be applied in systems

where there is evidence of underlying low-dimensional deter-
ministic dynamics (Cummins et al. 2015). EDM assumptions
are met when stochasticity is present (e.g. due to measurement
noise, stochastic drivers or unexplained variability) (Cenci
et al. 2019; Munch et al. 2020), but the system cannot be
entirely stochastic. To test for low-dimensional deterministic
dynamics we performed univariate SSR for each variable, and
used simplex projection (Sugihara & May 1990)—a type of
nearest neighbour regression performed on an attractor—to
check whether the system is forecastable beyond the skill of
an autoregressive model—an indicator of underlying deter-
ministic dynamics (Figs S2a and S4). To test for nonlinear
state dependence of a variable—the motivation behind EDM
—we used the S-map test for nonlinearity (Sugihara 1994)
(Figs S2b,c and S5).

EDM: Convergent cross-mapping

We used an EDM approach called convergent cross-mapping
(CCM) (Sugihara et al. 2012) to identify drivers of dengue
incidence. If two variables are causally related, then a

multivariate attractor—where each variable in the system rep-
resents a dimension that traces the dynamics of the system—
can be reconstructed (up to a practical limit) using lagged ver-
sions of just one of the variables (Fig. S1). Based on Takens’
Theorem, this univariate ‘shadow attractor’ preserves the
structural and dynamic properties of the original multivariate
attractor (Takens 1981; Sugihara et al. 2012). The concept
behind CCM is that if temperature causes dengue incidence,
then information about past temperature will be embedded in
the dynamics of dengue, such that the shadow attractor pro-
duced using only incidence data allows us to accurately recon-
struct temperature in the past. However, the converse scenario
would not be true: since dengue does not cause temperature,
the shadow attractor constructed using temperature data
should not contain information to accurately reconstruct past
dengue incidence (Supporting Information).
The critical criterion for estimating causal (directional)

associations between two variables using CCM is checking
that the cross-mapping skill (i.e. Pearson’s correlation coeffi-
cient, ρ, between predicted driver values using the univariate
SSR of the response variable, and the observed driver val-
ues) monotonically increases and plateaus (i.e. converges)
with the length of the response variable time series used in
cross-mapping. We used the Kendall’s τ test as a signifi-
cance test for monotonic increasing of cross-mapping skill
using the Kendall package (McLeod 2011). If cross-mapping
skill plateaus and τ > 0 then there is convergence (Grziwotz
et al. 2018).
We performed pairwise cross-correlations on the time series

to investigate time-lagged relationships between potential dri-
vers (i.e. temperature, rainfall and susceptibles index) and den-
gue incidence using the tseries package (Trapletti & Hornik
2018). Based on these analyses (Fig. S6), we applied a 9-week
time lag between temperature and incidence, an averaged lag
of 3–9 weeks for rainfall (i.e. the average rainfall over the pre-
ceding 3–9 weeks) to resemble standing water as mosquito
breeding habitat over a longer time period, and a 5-week lag
for the susceptibles index. These lags are proxies for the time
delays of potential cause-and-effects and are consistent with
results from field studies (Chen et al. 2010; Stewart Ibarra
et al. 2013).
We assessed the strength of evidence for effects of potential

drivers on dengue by comparing the CCM performance using
the data with the performance of two null models that control
for the seasonal trend (i.e. interannual mean) observed in all
variables (Fig. 2). These null models address the sensitivity of
CCM to periodic fluctuations (i.e. seasonality), which can
make two variables appear to be causally linked when instead
they are simply synchronized by a seasonal confounder
(Cobey & Baskerville 2016; Deyle et al. 2016a). In the first
‘seasonal’ null model, we preserved the seasonal signal, but
randomized the interannual anomalies (Deyle et al. 2016a). In
the second, more conservative ‘Ebisuzaki’ null model, we con-
served any periodicity (beyond seasonal) and randomized the
phases of Fourier-transformed time series (Ebisuzaki 1997).
We tested for statistically significant differences in cross-map-
ping skill between the model that used the data versus the null
models by performing Kolmogorov-Smirnov (K-S) tests after
convergence.

© 2020 John Wiley & Sons Ltd.
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We also repeated CCM in the nonsensical, reverse-causal
direction (e.g. to test whether incidence drives climate) as a
control for potential spurious relationships generated by non-
causal covariation (e.g. due to seasonality). This addresses the
issue of synchrony, in which CCM can indicate bidirectional
causality when one direction is false or nonsensical (Basker-
ville & Cobey 2017; Sugihara et al. 2017).

EDM: Forecast improvement

We examined the predictive power of the drivers on dengue
incidence by assessing how well we can predict dengue dynam-
ics using temperature, rainfall, susceptibles index and their
combined effects. We used a combination of univariate SSR
(i.e. with incidence data) and multivariate SSR to build fore-
casting models and to determine the improvement of forecast-
ing using simplex projection when including different
combinations of drivers (Deyle et al. 2013, 2016a) (Supporting
Information). We built the SSR forecasting models/attractors
using the 1990/1991–2008/2009 season data (Fig. 1) and made
forecasts 8 weeks ahead. We assessed model forecasting per-
formance using leave-one-out cross-validation.
Next, we evaluated out-of-sample forecasting performance

of these models using testing data from four additional sea-
sons (2009/2010–2012/2013). Predictions made on week zero
for the first forecast of the 2009/2010–2012/2013 period
(8 weeks ahead) came only from SSR using the 1990/
1991–2008/2009 data. All subsequent weekly forecasts
(8 weeks ahead) were made from updated SSR using all previ-
ous data, including past observations from the testing dataset.
Forecast uncertainty was evaluated by taking the density

and morphology of the attractor into account. The more com-
pact a simplex was and the less its starting position on the
attractor mattered for the simplex projection, the more certain
we were about our point estimate. Forecast variance was

obtained from a distribution of weighted nearest neighbour
regression from edges of simplexes constructed at various
starting positions in the past.
Finally, we compared our top model performance with per-

formance of previous models from 16 teams that participated
in a dengue forecasting challenge (Johansson et al. 2019) and
had access to the same data. To make a fair comparison, we
followed the procedure as directed in the challenge (Support-
ing Information).

EDM: Scenario exploration

In nonlinear systems, drivers generally have an effect that is
state-dependent: the strength and direction of the effect
depends on the current state of the system. Scenario explo-
ration with multivariate EDM allowed us to assess the effect
of a small change in temperature or rainfall on dengue inci-
dence, across different states of the system. The outcome of
these small changes allowed us to deduce the relationship
between each climate driver and dengue incidence and how
they depend on the system state. For each time step t we used
S-maps (Sugihara 1994; Deyle et al. 2016a) to predict dengue
incidence using a small increase (+ΔX) and a small decrease
(–ΔX) of the observed value of driver X(t) (temperature or
rainfall). For each putative climate driver, the difference in
dengue predictions between these small changes is

ΔY¼Y tþ1ð Þ X tð ÞþΔX tð Þ
2

h i
�Y tþ1ð Þ X tð Þ�ΔX tð Þ

2

h i
, where Y

(t + 1) is a function of X and all other state variables, and we
used ΔY/ΔX to approximate the effect of driver X at time t.
We repeated this over all time steps in our time series for both
temperature and rainfall to recover their approximate rela-
tionships with dengue incidence at different states of the sys-
tem. Scenario exploration analyses were repeated across
several model parameterizations to address potential sensitiv-
ity to parameter settings (Supporting Information).

RESULTS

Drivers of dengue dynamics

Empirical dynamic modelling showed that temperature, rain-
fall and the susceptibles index drive dengue incidence since the
convergence criterion was met (Kendall’s τ > 0, P < 0.01) for
all drivers (Fig. 3). Rainfall and susceptibles index were signif-
icant drivers of dengue incidence beyond seasonality, as their
effects were distinguishable from seasonal and Ebisuzaki null
models (Fig. 3b,c; Fig. S8b,c; K-S P < 0.001). This implies
statistically significant effects of both rainfall and the suscepti-
bles index on dengue, which are not obscured by a periodic
confounder. However, temperature was not a significant dri-
ver beyond seasonality (Fig. 3a; Fig. S8a; K-S P = 0.9). We
cannot rule out the possibility that the apparent forcing of
temperature on dengue is due to a seasonal confounder. How-
ever, if no such confounder exists, then the seasonal trend in
temperature, which accounts for most temperature variation
in San Juan, drives the seasonal trend observed in dengue
incidence. Compared to the other drivers, the converging
cross-mapping skill of the temperature null models were
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relatively high (Fig. 3; Fig. S8), suggesting that temperature
seasonality in each null model was a strong driver. Thus, sea-
sonal temperature may be driving dengue dynamics, a result
consistent with other studies (Huber et al. 2018; Robert et al.
2019).
As expected, EDM tests for putative causality in the non-

sensical directions—incidence driving temperature or rainfall
—were not significant (i.e. no convergence; Fig. S7, black
lines). This result further supports the finding that tempera-
ture and rainfall drive dengue incidence, because their causal
relationships were not confounded by spurious bidirectional-
ity. The null models for the nonsensical directions of causality
(Fig. S7, grey lines) also displayed no convergence (completely
flat). As expected, seasonality of dengue incidence does not
drive seasonality of temperature or rainfall. However, season-
ality (or any periodicity) of temperature, rainfall and suscepti-
bles index drive dengue dynamics, shown by convergence of
the seasonal and Ebisuzaki null models (grey lines in Fig. 3
and Fig. S8).

Predictive power of drivers

The multivariate SSR model using only temperature and
rainfall data did not predict dengue incidence very well
(ρ = 0.3839, RMSE = 47.72) although it captured the sea-
sonality of the epidemics (Fig. 4a). Forecast skill doubled
when the susceptibles index was included along with rain-
fall and temperature (ρ = 0.7547, RMSE = 37.40; Fig. 4c),
where timing and magnitude of epidemics were captured
reasonably well. Dengue incidence prediction improved
even further when incidence was added into the model
with all drivers (ρ = 0.7662, RMSE = 37.14; Fig. 4e). Den-
gue incidence was somewhat predictable using univariate
SSR of incidence data alone (ρ = 0.4459, RMSE = 46.75;
Fig. 4g), suggesting that the dengue incidence time series
contains information about its drivers, although limited.

This points to some additional value of including the dri-
ver variables.
We also evaluated the performance of the SSR models

(Fig. 4a,c,e,g) constructed using data from seasons 1990/
1991–2008/2009 on external, testing data from 2009/
2010–2012/2013 that were not used in SSR (Fig. 4b,d,f,h). The
average out-of-sample forecast skill for each model for the
testing seasons was higher than that of the 1990/1991–2008/
2009 forecasts, although the errors were larger. The model
using only temperature and rainfall displayed predictability
(ρ = 0.8989, RMSE = 52.30; Fig. 4b), the model that also
included the susceptibles index improved predictions
(ρ = 0.9475, RMSE = 52.12; Fig. 4d) and the model that also
included past incidence made highly accurate predictions
(ρ = 0.9697, RMSE = 46.75; Fig. 4f). The model that only
included dengue incidence without the drivers was also predic-
tive, although more error-prone (ρ = 0.9044, RMSE = 57.34;
Fig. 4h). All SSR models (Fig. 4a–h) had significant forecast
skill (ρ) values (Fisher’s z-transformation P < 0.001).
The model with the highest prediction skill for the testing

seasons (2009/2010–2012/2013), which included past climate,
susceptibles index and incidence data as predictors (Fig. 4f),
also outperformed models from the dengue forecasting chal-
lenge, including the ensemble model (Johansson et al. 2019)
for predicting peak incidence, peak week and seasonal inci-
dence for all seasons on average (Tables S1–S2; Figs S9–S12).
This demonstrates the benefit of the EDM approach for cap-
turing the mechanistic, nonlinear, interdependent relationships
among drivers over both equation-based mechanistic models
and phenomenological models.

State-dependent functional responses

We found state-dependent effects of temperature and rainfall
with non-zero median effects. Temperature had a small posi-
tive median effect (2.88 cases/°C, Wilcox P < 0.001) on
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dengue incidence (Fig. 5a). A positive effect is expected for
the temperature range in Puerto Rico (Mordecai et al. 2017)
(Fig. 6e, black dashed lines), although the effect was occasion-
ally much stronger, both positive and negative (Fig. 5a,b).
The large negative effects occurred only at the highest temper-
ature values (as predicted by mechanistic models of tempera-
ture-dependent transmission), reinforced by a lower quantile
regression with a strongly negative slope (Fig. 5b, bottom
dashed red line). However, positive effects occurred across the
whole temperature range, which is limited to temperatures
below the 29 °C optimal temperature for transmission esti-
mated from mathematical models and laboratory data
(Mordecai et al. 2017).
Rainfall had a small negative median effect (–0.12 cases/

mm, Wilcox P < 0.001), but occasionally had very large
negative effects (Fig. 5a,c). These large, negative effects of
rainfall on dengue occurred when there was less than
100 mm of rain per week (Fig. 5c), consistent with expecta-
tions that drought could lead to a high number of dengue
cases due to water storage, which can provide mosquito
breeding habitat (Pontes et al. 2000). There are also small
positive effects of rainfall on dengue (Fig. 5c), suggesting
that overall the results showed competing effects of low to
moderate rain providing standing water for mosquito

breeding and humans storing water where mosquitoes can
breed when there is drought or low rainfall.
These results suggest the strength and direction of the

effects of climate on dengue dynamics depend on the state of
the system. In addition to the nonlinear effects of climate dri-
vers themselves on dengue incidence, another potential cause
of state-dependent climate effects on dengue dynamics is the
variation in the susceptible population size over time (Fig. 6a,
b). Outbreaks do not occur when there are too few susceptible
people in the population. As expected, when the susceptibles
index was small (λ < 0.85) incidence was insensitive to climate
(Fig. 6c,f). By contrast, when the susceptibles index was large
(λ > 0.85), temperature and rainfall effects on dengue inci-
dence appeared (Fig. 6d,g). The gradual increase and decrease
of the rate of change of dengue as a function of temperature
(Fig. 6d, red solid lines) aligned well with the changes in slope
over the increasing part (Fig. 6e, black dashed lines represent-
ing the temperature range in our study) of the unimodal tem-
perature response curve for dengue transmission by Ae.
aegypti developed previously (Mordecai et al. 2017). This is
an important finding, since evidence of climate functional
responses for disease dynamics is rare due to the difficulty of
obtaining appropriately informative field data. It is possible
that if we had temperature data ranging across a larger
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Figure 4 Predictive power of climate and susceptibles index (λ) on in-sample (left) and out-of-sample (right) dengue incidence. Forecasting results of

incidence (8 weeks ahead) are shown in turquoise (solid lines represent the mean; shaded regions represent 90% confidence intervals) and observed

incidence in black. Time series for seasons 1990/1991–2008/2009 were used to construct SSR models for forecasts using leave-one-out cross-validation (a, c,

e, g). Data for seasons 2009/2010–2012/2013 were used to evaluate the SSR models constructed in a, c, e and g, respectively, for out-of-sample forecasts (b,

d, f, h). All SSR models (a–h) had significant forecast skill (ρ) values (Fisher’s z-transformation P < 0.001).
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spectrum—possibly by assembling data across multiple cli-
mates—that the empirical functional response derived from
EDM would also look unimodal. Furthermore, when the sus-
ceptibles index was high, the slope of the relationship between
rainfall and dengue incidence became more negative as rainfall
increased, suggesting a concave-down effect of rainfall on inci-
dence (Fig. 6g,h). This relationship has been difficult to char-
acterize in the field because of multiple, possibly context-
dependent and lagged, mechanisms linking rainfall to dengue.

DISCUSSION

High host susceptibility allows seasonal climate suitability to
fuel large dengue epidemics in San Juan, Puerto Rico. The
effects of climate and susceptibility are nonlinear, interdepen-
dent and state-dependent, which makes inference from con-
trolled experiments, equation-based mechanistic models or
phenomenological models difficult. EDM provides methods
for identifying these drivers, quantifying their predictive
power and approximating their functional responses. In
Puerto Rico, the causes of extensive interannual variability in
dengue incidence have remained a mystery, despite hypotheses
that climate and host susceptibility were involved. Here we
used EDM and a proxy for susceptible availability to disen-
tangle nonlinear and interactive mechanisms driving disease
dynamics.
We found that rainfall, susceptible availability and plausibly

temperature (via its seasonality) interact to drive dengue inci-
dence. Combined, these three drivers predicted dengue inci-
dence with high accuracy (Fig. 4c,d). The EDM-based
forecasting model outperformed 16 models and an ensemble
model in a recently published dengue forecasting challenge
(Johansson et al. 2019), suggesting that it could enhance den-
gue control efforts if surveillance efforts continue to report

weekly case data. Finally, as expected from epidemiological
theory, climate effects on dengue only appeared when suscep-
tible availability exceeded a threshold (λ > 0.85; Fig. 6).
The fact that climate effects are first observed when

λ ≈ 0:85 (before the onset of an outbreak, λ = 1), suggests
that rainfall, and possibly temperature, have an effect on the
timing of an impending epidemic. Climate could drive the
transmission rate, thus influencing λ (which is proportional to
both susceptible population size and R0 when λ is close to 1),
and therefore the timing of an outbreak could be attributed
to the changes in transmission caused by seasonal climatic dri-
vers (Rypdal & Sugihara 2019). The seasonality of tempera-
ture and rainfall had higher predictive skill than seasonality of
the susceptibles index (Fig. 3, grey lines), further supporting
that seasonality of incidence was associated more with cli-
mate. However, the susceptibles index was critical for predict-
ing dengue epidemic magnitudes (Fig. 4c–f). Using the same
data, Johnson et al. (2018) found that mechanistic models
could predict the timing of seasonal epidemics, but that a phe-
nomenological machine learning component was needed to
capture interannual variation in epidemic magnitude. Our
work suggests that the unobserved size of the susceptible pop-
ulation was a key missing link for predicting magnitude varia-
tion across years.
Previous studies have built models accounting for both sus-

ceptible availability and climate on dengue by reconstructing
time series of susceptibles from a compartmental modelling
framework (Metcalf et al. 2017). However, no previous studies
on dengue have explored the interdependence between climate
and susceptible population size. We showed that susceptible
availability modifies climate effects on dengue; climate has
negligible effects unless the susceptible population size is large
enough (Fig. 6). The interdependence of climate and popula-
tion susceptibility has also been studied in diseases where the

(a) (b) (c)

Figure 5 Temperature and rainfall show mixed effects on dengue incidence. Scenario exploration quantified the variable effect of changes in drivers on

dengue. Boxplots show that the median effects of rainfall (Rain) and temperature (Temp) are small (close to zero), but drivers occasionally have strong

impacts (a). To investigate climate driver functional responses, we plotted the rate of change of dengue incidence as a function of temperature (b) and

rainfall (c). Red and blue lines represent regression on the median for temperature and rainfall, respectively, in a quantile regression. The dashed red and

blue lines represent regression on the 0.05 and 0.95 quantiles of temperature and rainfall respectively. Temperature has an overall positive effect on dengue

incidence (median regression line of the rate of change is positive), but can also have large negative and positive effects (a, b). Rainfall has an overall

negative effect (median regression line of the rate of change is negative), but can also have small positive and large negative effects (a, c).
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opposite effect was found. For example, climate effects on
SARS-CoV-2 are expected to be negligible when susceptible
availability is high in the early stage of the emerging pandemic
(Baker et al. 2020). For influenza dynamics, population den-
sity in cities—potentially a proxy for susceptible availability—
also modulated climate effects on disease transmission: climate
effects were negligible in cities with high population densities
(Dalziel et al. 2018).

Because dengue susceptibility is so complex—due to the ser-
otype dynamics and time- and antibody titre-dependent cross-
protection and enhancement (Katzelnick et al. 2017b)—total
population density or size may not be a reasonable proxy for
susceptible availability in dengue dynamics, and a direct mech-
anistic estimate of population susceptibility will likely never be
widely available for most populations. Accordingly, it has been
difficult for previous mechanistic models to capture susceptible

(a)

(c)

(f) (g) (h)

(d) (e)

(b)

Figure 6 Temperature and rainfall effects on dengue incidence vary depending on the susceptible population size (λ). The effect of changes in temperature

(a) and rainfall (b) against λ shows that driver effects are split around the threshold λ ≈ 0:85 (purple dashed line). Red and blue lines represent the median

regression (dashed red and blue lines represent the 0.05 and 0.95 quantile regressions) of temperature and rainfall effects, respectively (a–d, f, g). Neither

climate driver has an effect on dengue incidence when susceptible availability is low (λ < 0.85; c, f). However, when λ > 0.85 climate effects are observed:

temperature has mostly a positive effect (d), possibly sigmoidal in that temperature range (e; between black dashed lines), and rainfall has a negative effect

(g), and conceptually a concave-down functional response (h). Slopes of tangents (black lines) represent rates of change (e, h). The effect of temperature on

relative R0 of dengue assuming transmission via Aedes aegypti mosquitoes is unimodal (Mordecai et al.2017) over a larger temperature range (e). Assuming

that relative R0 is proportional to dengue incidence, our results suggest that the rate of change of dengue incidence is increasing until reaching a maximum

and then decreasing (d; red median regression lines).
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dynamics for dengue and their interactions with climate. How-
ever, our approach provides a useful proxy that captures the
susceptible population dynamics even in the absence of more
detailed immunological information. By inferring the suscepti-
bles index from incidence data, we were able to capture the
strong influence of the susceptible availability on dengue
dynamics, which in turn moderated the effect of climate on
dengue dynamics. This result is expected from theory (Ker-
mack & McKendrick 1927; Xu et al. 2017), but demonstrating
it empirically is a unique contribution of this study.
Even when accounting for susceptible availability, the

effects of temperature and rainfall on dengue were strongly
state-dependent (Fig. 6d,g). This result is potentially due to
nonlinear effects of each climate driver (Fig. 6e,h), interac-
tions and correlations between temperature and rainfall,
microclimate variation over space and time that is not cap-
tured by weekly averages, and complex lagged effects that are
not captured by a single fixed lag (e.g. 9 weeks). In Puerto
Rico, mosquitoes also breed in septic tanks year-round, allow-
ing transmission to occur independently from rainfall
(Mackay et al. 2009), thus weakening the rainfall–dengue neg-
ative relationship (Fig. 6g). Some of this additional variation
may be captured in the dengue incidence time series itself,
which may explain why including it improves forecast skill
over climate and susceptibility alone (Fig. 4e,f). Despite this
additional variation, our results are consistent with previous
studies suggesting that dengue dynamics in Puerto Rico are
positively associated with temperature (Johansson et al.
2009b; Barrera et al. 2011; Morin et al. 2015), and possibly
negatively associated with rainfall (Johansson et al. 2009a;
Morin et al. 2015), since most Ae. aegypti pupae in Puerto
Rico are produced in human-made containers during periods
of drought (Barrera et al. 2011).
The climate and incidence data used here have been used in

multiple forecasting efforts, where ensemble approaches and
approaches that incorporated mechanisms outperformed purely
statistical approaches (Johansson et al. 2019). However, even the
high-performing forecasting methods using the same dataset,
and including (experimentally derived) assumed mechanisms for
the joint influence of climate and susceptibility on dengue
dynamics, are still error-prone to the timing (on the order of
weeks) and the magnitude (on the order of 50 cases) of intra-an-
nual epidemics (Morin et al. 2015; Johansson et al. 2019). Mech-
anisms isolated independently in controlled experiments do not
necessarily scale up to the population level, and susceptible
dynamics derived from compartmental models may be too sim-
ple to properly capture true susceptibility at the population level
for dengue (Katzelnick et al. 2017b). EDM allowed us to infer
mechanisms empirically from population-level data, and
accounted for the population-level interdependence between cli-
mate and susceptible availability for forecasting, which probably
contributed to our model outperforming previous forecasting
models and ensembles (Table S1).
Connecting climate and dengue at the population level is

challenging, because relationships are likely nonlinear and
state-dependent. Rigorous methods for testing hypotheses,
deriving mechanisms and making predictions are essential for
understanding disease dynamics. Our approach, using EDM
and an inferred proxy for the susceptible population size,

confirmed that climate has nonlinear, seasonal effects on den-
gue epidemics in San Juan, Puerto Rico, but only above a cer-
tain threshold of susceptible availability. EDM-derived
mechanisms could be applied to predict ecological responses
to changing environments in a world undergoing rapid envi-
ronmental change.
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